Questions are for separate science students only

Q1.

A teacher investigated the radiation emitted by two different radioactive sources, ${\bf A}$ and ${\bf B}$.

Figure 1 shows a radiation detector positioned near one of the radioactive sources. (Physics only)

Figure 1

The teacher measured the count rate at different distances for each radioactive source.

Figure 2 shows the results.

Figure 2

	can not be used to determine if Source B emits beta radiation or radiation.
	how an absorbing material could be used to show which type of is emitted by Source B . (HT only)
eacher to	ook safety precautions during the experiment.
	one safety precaution the teacher would have taken to he radiation dose the teacher received.

(1)

(d)	Suggest one safety precaution that the teacher would have taken to avoid becoming contaminated.

e) **Figure 3** shows how the number of atoms of a radioactive element in a sample varied with time.

Figure 3

Activity is the rate at which a source of unstable nuclei decays.	
Determine the activity of the radioactive sample at 300 seconds.	
Give the unit.	
	-
	_
	-
Activity = Unit	<u>. </u>
· —	
(Total 11	marks)

Q2.

(a)	Carbon-14 is a radioactive isotope.	(Ph	vsics	only	1
١	a	Carbon-14 is a radioactive isotope.	(, ,,,	yolco	OIII	٠,

Carbon-14 has a half-life of 5700 years.

What does 'a half-life of 5700 years' mean?

(1)

The table below gives the half-life of some other radioactive isotopes.

Isotope	Half-life in seconds		
Nitrogen-18	0.62		
Nitrogen-17	4.17		
Fluorine-17	64.37		
Fluorine-18	6584.34		

/I \		- · · · · · · · · · · · · · · · · · · ·	41 4 1			4
1h	A sample of fluorine-1	l / hae an activity	/ that is and a	Hartar at ite	original	2CtIV/ItV
101	A sample of module-	ı <i>ı</i> ı ıas alı adılyılı	iliai is olie u	uarter or its	Oriuniai	activity

Calculate the age of the sample of fluorine-17. (HT only)

Age = _____s

(2)

	ople who work in the nuclear power industry need to be aware of diation and contamination.
Des	scribe the difference between irradiation and contamination.
	ve one health risk to a person working close to a source of nuclear iation.
Vor emi	kers in nuclear power stations are monitored to check the radiation they it.
	vorker stands 1 cm away from a radiation detector. e amount of radiation the worker emits is recorded.
Exp	plain why the worker needs to stand close to the radiation detector.

(g)

Workers in the nuclear power industry are exposed to nuclear radiation.
Pilots on aircraft are exposed to cosmic radiation from space.
daily dose caused by working in a nuclear power station = 0.00050 mSv
hourly dose from cosmic rays to a pilot while flying = 0.0030 mSv
Calculate the number of days it takes for a nuclear power station worker to receive the same dose as a pilot flying for 24 hours.
Number of days =
(Total 14 mar